Voltammetric Determination of Tannic Acid in Beverages using Pencil Graphite Electrode

نویسندگان

  • Dai Long VU
  • Bensu ERTEK
  • Yusuf DILGIN
  • Libor ČERVENKA
چکیده

Vu D.L., Ertek B., Dilgin Y., Červenka L. (2015): Voltammetric determination of tannic acid in beverages using pencil graphite electrode. Czech J. Food Sci., 33: 72–76. The pretreated pencil graphite electrode (Pre-PGE) prepared by a chronoamperometry technique was applied for the determination of tannic acid using anodic stripping differential pulse voltammetry. The currents obtained from voltammetry measurements at optimum conditions were linearly correlated with the concentration of tannic acid. Calibration curve was obtained for tannic acid in the concentration range of 5.0–500 × 10–9 mol/l. The limit of detection was found to be 1.5 × 10–9 mol/l. The content of tannic acid in beverage samples determined with Pre-PGE was in good agreement with that obtained by the standard spectrophotometric method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Detection of Insulin in Blood serum using Ppy/GF Nanocomposite Modified Pencil Graphite Electrode

In this study, pencil graphite electrode was modified using conductive polypyrrole (Ppy) and grapheme (GF) nanocomposite for electrochemical determination of insulin. Electrochemical behavior of insulin on PGE was investigated using cyclic voltammetric (CV) and differential pulse voltammetric (DPV) and chronoaprometry (CA) methods. Several effective parameters including pH, concentration, and s...

متن کامل

Electrochemical Behavior of 2-Aminothiazole at Poly Glycine Modified Pencil Graphite Electrode

Electro analysis of 2-Aminothiazole (2-AT) by a low cost poly Glycine modified Pencil Graphite Electrode (poly Gly/PGE) was studied using of cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. The optimal experimental conditions to determine 2-AT was setup by the variation of the current with scan rate, concentration and pH. Electrochemical performance of the 2-AT at ...

متن کامل

Sensitive Voltammetric Determination of Natural Flavonoid Quercetin on a Disposable Graphite Lead.

In this paper, a pencil graphite electrode was pretreated using chronoamperometry technique in phosphate buffer solution (pH=7.0) for sensitive determination of quercetin. Oxidation of quercetin was investigated using pretreated pencil graphite electrode and anodic stripping differential pulse voltammetry. Under optimal conditions, the anodic current of quercetin exhibited linear response to it...

متن کامل

Voltammetric Behavior and Determination of Trace Amounts of Omeprazole Using an Edge-plane Pyrolytic Graphite Electrode

The voltammetric performance of edge-plane pyrolytic graphite (EPG) electrode via adsorptive stripping voltammetry was investigated for study of the electrochemical behavior of omeprazole (OMZ) in aqueous solution. The results revealed that the oxidation of OMZ is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mech...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015